Dynamical Differential Equations Compatible with Rational Qkz Equations

نویسنده

  • VITALY TARASOV
چکیده

For the Lie algebra glN we introduce a system of differential operators called the dynamical operators. We prove that the dynamical differential operators commute with the glN rational quantized Knizhnik-Zamolodchikov difference operators. We describe the transformations of the dynamical operators under the natural action of the glN Weyl group. ∗ Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, 402 North Blackford St., Indianapolis, IN 46202-3216, USA ⋄Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Equations Compatible with Boundary Rational Qkz Equation

We give differential equations compatible with the rational qKZ equation with boundary reflection. The total system contains the trigonometric degeneration of the bispectral qKZ equation of type (C n , Cn) which in the case of type GLn was studied by van Meer and Stokman. We construct an integral formula for solutions to our compatible system in a special case.

متن کامل

Elliptic Dynamical R-Matrices from the Monodromy of the q-Knizhnik-Zamolodchikov Equations for the Standard Representation of Uq(s̃ln+1)

In 1992, in the pioneering work [FR92], Frenkel and Reshetikhin generalized the notion of conformal blocks to the q-deformed case, and proposed a q-deformed version of the KnizhnikZamolodchikov equations – the so called qKZ equations, which are no longer differential but rather q-difference equations. Furthermore, they calculated the connection (= q-monodromy) of these equations in a particular...

متن کامل

A rational Chebyshev functions approach for Fredholm-Volterra integro-differential equations

The purpose of this study is to present an approximate numerical method for solving high order linear Fredholm-Volterra integro-differential equations in terms of rational Chebyshev functions under the mixed conditions. The method is based on the approximation by the truncated rational Chebyshev series. Finally, the effectiveness of the method is illustrated in several numerical examples. The p...

متن کامل

Difference Equations Compatible with Trigonometric Kz Differential Equations

The trigonometric KZ equations associated with a Lie algebra g depend on a parameter λ ∈ h where h ⊂ g is the Cartan subalgebra. We suggest a system of dynamical difference equations with respect to λ compatible with the KZ equations. The dynamical equations are constructed in terms of intertwining operators of g -modules.

متن کامل

Connection Problems for Quantum Affine KZ Equations and Integrable Lattice Models

Cherednik attached to an affineHecke algebramodule a compatible systemof difference equations, called quantum affine Knizhnik–Zamolodchikov (KZ) equations. In the case of a principal series module, we construct a basis of power series solutions of the quantum affine KZ equations. Relating the bases for different asymptotic sectors gives rise to a Weyl group cocycle, which we compute explicitly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004